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Outline 

§  The Landscape of Sparse Computations: 
w  Direct, Iterative. 
w  Dense “containers”. 

§  Overview of Trilinos:   
w  Capabilities & Organization. 

§  Parallel Computing Trends & Models:  
w  How we reason about parallelism. 

§  Trilinos Manycore Efforts:  
w  Algorithms & Data Classes  

§  Future Directions: 
w  Resilience. 
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Matrices 

§  Matrix (defn): (not rigorous) An m-by-n, 2 dimensional 
array of numbers.  

§  Examples:  

1.0  2.0  1.5 
A =   2.0  3.0  2.5 

1.5  2.5  5.0 

a11 a12 a13 
A =    a21 a22 a23 

a31 a32 a33 
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Sparse Matrices 

§  Sparse Matrix (defn): (not rigorous) An m-by-n 
matrix with enough zero entries that it makes 
sense to keep track of what is zero and nonzero.  

§  Example:  
a11 a12  0   0    0    0  
a21 a22 a23  0    0    0  

A =        0   a32 a33 a34  0    0  
0   0    a43 a44 a45  0  
0   0    0   a54 a55 a56 
0   0    0    0   a65 a66 



Dense vs Sparse Costs 

§  What is the cost of storing the tridiagonal matrix with all 
entries? 

§  What is the cost if we store each of the diagonals as 
vector? 

§  What is the cost of computing y = Ax for vectors x 
(known) and y (to be computed): 
w  If we ignore sparsity? 
w  If we take sparsity into account? 
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Origins of Sparse Matrices 
§  In practice, most large matrices are sparse. Specific sources: 

w  Differential equations. 
•  Encompasses the vast majority of scientific and engineering simulation. 
•  E.g., structural mechanics. 

–  F = ma.  Car crash simulation. 

w  Stochastic processes. 
•  Matrices describe probability distribution functions. 

w  Networks. 
•  Electrical and telecommunications networks. 
•  Matrix element aij is nonzero if there is a wire connecting point i to 

point j. 
w  3D imagery for Google Earth 

•  Relies on SuiteSparse (via the Ceres nonlinear least squares solver 
developed by Google).  

w  And more… 



7 
Example: 1D Heat Equation 

(Laplace Equation) 
§  The one-dimensional, steady-state heat equation on the 

interval [0,1] is as follows: 

§  The solution u(x), to this equation describes the 
distribution of heat on a wire with temperature equal to a 
and b at the left and right endpoints, respectively, of the 
wire. 

''( ) 0,   0 1.
(0) .
(1) .

u x x
u a
u b

= < <
=
=



8 

Finite Difference Approximation 

§  The following formula provides an approximation of u”(x) 
in terms of u: 

§  For example if we want to approximate u”(0.5) with h = 
0.25: 

2
2

( ) 2 ( ) ( )"( ) ( )
2

u x h u x u x hu x O h
h

+ − + −= +

( )2
(0.75) 2 (0.5) (0.25)"(0.5)

2 1 4
u u uu − +≈



9 1D Grid 

x0= 0 x4= 1 x1= 0.25 x2= 0.5 x3= 0.75 x: 

u(x): u(0)=a 
        = u0 u(0.25)=u1 u(0.5)=u2 u(0.75)=u3 u(1)=b 

        = u4 

 Note that it is impossible to find u(x) for all values of 
x. 
 Instead we: 

 Create a “grid” with n points. 
 Then find an approximate to u at these grid 
points. 

 If we want a better approximation, we increase n. 

Interval: 

Note:  
We know u0 and u4 . 
We know a relationship between the ui  via the finite difference 
equations. 
 We need to find ui for i=1, 2, 3. 



0 1 2 1 22

2 3 4 3 22

1 1 1 12

Left endpoint:
1

( 2 ) 0,  or 2 .

Right endpoint:
1

( 2 ) 0,  or 2 .

Middle points:
1

( 2 ) 0,  or 2 0  for 2.i i i i i i

u u u u u a
h

u u u u u b
h

u u u u u u i
h − + − +

− + = − =

− + = − =

− + = − + − = =
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What We Know 
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Write in Matrix Form 

1

2

3

2 1 0
1 2 1 0
0 1 2

u a
u
u b

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 Notes: 
1.  This system was assembled from pieces of what we know. 
2.  This is a linear system with 3 equations and three unknowns. 
3.  We can easily solve. 
4.  Note that n=5 generates this 3 equation system. 
5.  In general, for n grid points on [0, 1], we will have n-2 equations and unknowns. 
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General Form of 1D Finite Difference 

Matrix 

1

2

3

1

2 1 0 0 0
1 2 1 0 0 0
0 0 0

1
0 0 0 1 2 n

u a
u
u

u b−

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦
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A View of More Realistic Problems  

§  The previous example is very simple. 
§  But basic principles apply to more complex problems. 
§  Finite difference approximations exist for any differential 

equation. 
§  Finite volume is widely used. 
§  Sandia primarily used finite elements. 
§  Leads to far more complex matrix patterns. 
§  Fun example… 
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“Tapir” Matrix (John Gilbert) 



15 Corresponding Mesh 
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Sparse Linear Systems: 

Problem Definition 
§  A frequent requirement for scientific and engineering 

computing is to solve: 
    Ax = b 
 where  A is a known large (sparse) matrix a linear operator, 
   b is a known vector, 
   x is an unknown vector. 
 NOTE:  We are using x differently than before. 
   Previous x:  Points in the interval [0, 1]. 
   New x:   Vector of u values. 

§  Goal: Find x. 
§  Question: How do we solve this problem? 



Sparse Direct Methods 
§  Construct L and U, lower and upper triangular, resp, s.t. 

  
   LU = A 

§  Solve Ax = b: 
1.  Ly = b 
2.  Ux = y 

§  Symmetric versions: LLT = A, LDLT 

§  When are direct methods effective? 
w  1D: Always, even on many, many processors. 
w  2D: Almost always, except on many, many processors. 
w  2.5D: Most of the time. 
w  3D: Only for “small/medium” problems on “small/medium” processor counts. 

§  Bottom line:  Direct sparse solvers should always be in your toolbox. 
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Sparse Direct Solver 
Packages §  HSL: http://www.hsl.rl.ac.uk  

§  MUMPS: http://mumps.enseeiht.fr 
§  Pardiso: http://www.pardiso-project.org  
§  PaStiX: http://pastix.gforge.inria.fr  
§  SuiteSparse: http://www.cise.ufl.edu/research/sparse/SuiteSparse 
§  SuperLU: http://crd-legacy.lbl.gov/~xiaoye/SuperLU/index.html 
§  UMFPACK : http://www.cise.ufl.edu/research/sparse/umfpack/ 
§  WSMP: http://researcher.watson.ibm.com/researcher/view_project.php?id=1426 

§  Trilinos/Amesos/Amesos2: http://trilinos.org  
§  Notes: 

w  All have threaded parallelism. 
w  All but SuiteSparse and UMFPACK have distributed memory (MPI) parallelism. 
w  MUMPS, PaStiX, SuiteSparse, SuperLU, Trilinos, UMFPACK are freely available. 
w  HSL, Pardiso, WSMP are available freely, with restrictions. 
w  Some research efforts on GPUs, unaware of any products. 

§  Emerging hybrid packages: 
w  PDSLin – Sherry Li. 
w  HIPS – Gaidamour, Henon. 
w  Trilinos/ShyLU – Rajamanickam, Boman, Heroux. 
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Other Sparse Direct Solver 
Packages 

§  TAUCS : http://www.tau.ac.il/~stoledo/taucs/ 
§  PSPASES : http://www-users.cs.umn.edu/~mjoshi/pspases/ 
§  BCSLib : http://www.boeing.com/phantom/bcslib/ 

§  “Legagy” packages that are open source but not under active development 
today. 
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Emerging Trend in Sparse Direct 

§  New work in low-rank approximations to off-diagonal 
blocks. 

§  Typically:   
w  Off-diagonal blocks in the factorization stored as dense matrices. 

§  New:  
w  These blocks have low rank (up to the accuracy needed for 

solution). 
w  Can be represented by approximate SVD. 

§  Still uncertain how broad the impact will be. 
w  Will rank-k SVD continue to have low rank for hard problems? 

§  Potential: Could be breakthrough for extending sparse 
direct method to much larger 3D problems. 

20 
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Iterative Methods 

§  Given an initial guess for x, called x(0), (x(0) = 0 is 
acceptable) compute a sequence x(k), k = 1,2, … such 
that each x(k) is “closer” to x. 

§  Definition of “close”: 
w  Suppose x(k) = x exactly for some value of k. 
w  Then r(k) = b – Ax(k) = 0 (the vector of all zeros). 
w  And norm(r(k)) = sqrt(<r(k), r(k)>) = 0 (a number). 
w  For any x(k), let r(k) = b – Ax(k) 
w  If  norm(r(k)) = sqrt(<r(k), r(k)>) is small (< 1.0E-6 say) 

then we say that x(k) is close to x. 
w  The vector r is called the residual vector. 



Sparse Iterative Solver Packages 
§  PETSc: http://www.mcs.anl.gov/petsc  
§  hypre: https://computation.llnl.gov/casc/linear_solvers/sls_hypre.html  
§  Trilinos: http://trilinos.sandia.gov  
§  HSL: http://www.hsl.rl.ac.uk  
§  Sparskit: http://www-users.cs.umn.edu/~saad/software  
§  Notes: 

w  There are many other efforts, but I am unaware of any that have a broad user base like 
hypre, PETSc and Trilinos. 

w  Sparskit, and other software by Yousef Saad, is not a product with a large official user 
base, but these codes appear as embedded (serial) source code in many applications.  

w  PETSc and Trilinos support threading, distributed memory (MPI) and growing 
functionality for accelerators. 

w  Many of the direct solver packages support some kind of iteration, if only iterative 
refinement. 

22 
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Trilinos Overview 



What is Trilinos? 

§  Object-oriented software framework for… 
§  Solving big complex science & engineering problems 
§  More like LEGO™ bricks than Matlab™ 
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Background/Motivation 
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Op#mal	  Kernels	  to	  Op#mal	  Solu#ons:	  
w  Geometry,	  Meshing	  	  
w  Discre#za#ons,	  Load	  Balancing.	  
w  Scalable	  Linear,	  Nonlinear,	  Eigen,	  	  

Transient,	  Op#miza#on,	  UQ	  solvers.	  
w  Scalable	  I/O,	  GPU,	  Manycore	  

w  R&D	  100	  Winner	  
w  9400	  Registered	  Users.	  
w  32,400	  Downloads.	  
w  Open	  Source.	  

w  60	  Packages.	  
w  Binary	  distribu#ons:	  

w  Cray	  LIBSCI	  
w  Debian,	  Ubuntu	  
w  Intel	  (in	  process)	  

Laptops	  to	  
Leadership	  systems	  



Trilinos Strategic Goals 

§  Scalable Computations: As problem size and processor counts increase, the cost of 
the computation will remain nearly fixed.   

§  Hardened Computations: Never fail unless problem essentially intractable, in 
which case we diagnose and inform the user why the problem fails and provide a 
reliable measure of error. 

§  Full Vertical Coverage: Provide leading edge enabling technologies through the 
entire technical application software stack: from problem construction, solution, 
analysis and optimization.  

§  Grand Universal Interoperability: All Trilinos packages, and important external 
packages, will be interoperable, so that any combination of packages and external 
software (e.g., PETSc, Hypre) that makes sense algorithmically will be possible 
within Trilinos.  

§  Universal Accessibility: All Trilinos capabilities will be available to users of major 
computing environments: C++, Fortran, Python and the Web, and from the desktop to 
the latest scalable systems. 

§  Universal Solver RAS: Trilinos will be: 
w  Reliable: Leading edge hardened, scalable solutions for each of these 

applications 
w  Available: Integrated into every major application at Sandia  
w  Serviceable: “Self-sustaining”. 

Algorithmic 
Goals 

Software 
Goals 



Capability Leaders: 
Layer of Proactive Leadership 

§  Areas: 
w  Framework, Tools & Interfaces (J. Willenbring). 
w  Software Engineering Technologies and Integration (R. Bartlett). 
w  Discretizations (P. Bochev). 
w  Geometry, Meshing & Load Balancing (K. Devine). 
w  Scalable Linear Algebra (M. Heroux). 
w  Linear & Eigen Solvers (J. Hu). 
w  Nonlinear, Transient & Optimization Solvers (A. Salinger). 
w  Scalable I/O: (R. Oldfield) 
w  User Experience: (W. Spotz) 

§  Each leader provides strategic direction across all Trilinos packages 
within area. 

29 



Unique features of Trilinos 

§  Huge library of algorithms 
w  Linear and nonlinear solvers, preconditioners, … 
w  Optimization, transients, sensitivities, uncertainty, … 

§  Growing support for multicore & hybrid CPU/GPU 
w  Built into the new Tpetra linear algebra objects 

•  Therefore into iterative solvers with zero effort! 
w  Unified intranode programming model 
w  Spreading into the whole stack: 

•  Multigrid, sparse factorizations, element assembly… 

§  Support for mixed and arbitrary precisions 
w  Don’t have to rebuild Trilinos to use it 

§  Support for huge (> 2B unknowns) problems 

30 



Trilinos Current Release 

§ Trilinos 11.4 current, 11.6 RSN. 
w 54 packages.  
w Multicore/GPU enhancements to 5 packages. 

§  Downloads:  
w Average: 500/month. 

§  Website: trilinos.org. 

31 
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Trilinos software organization 
 
 



Trilinos Package Summary 
Objective Package(s) 

Discretizations 
Meshing & Discretizations STK, Intrepid, Pamgen, Sundance, ITAPS, Mesquite 

Time Integration Rythmos 

Methods 
Automatic Differentiation Sacado 

Mortar Methods Moertel 

Services 

Linear algebra objects Epetra, Tpetra, Kokkos, Xpetra 

Interfaces Thyra, Stratimikos, RTOp, FEI, Shards 

Load Balancing Zoltan, Isorropia, Zoltan2 

“Skins” PyTrilinos, WebTrilinos, ForTrilinos, Ctrilinos, Optika 

C++ utilities, I/O, thread API Teuchos, EpetraExt, Kokkos, Triutils, ThreadPool, Phalanx, Trios 

Solvers 

Iterative linear solvers AztecOO, Belos, Komplex 

Direct sparse linear solvers Amesos, Amesos2, ShyLU 

Direct dense linear solvers Epetra, Teuchos, Pliris 

Iterative eigenvalue solvers Anasazi, Rbgen 

ILU-type preconditioners AztecOO, IFPACK, Ifpack2, ShyLU 

Multilevel preconditioners ML, CLAPS, Muelu 

Block preconditioners Meros, Teko 

Nonlinear system solvers NOX, LOCA, Piro 

Optimization (SAND) MOOCHO, Aristos, TriKota, Globipack, Optipack 

Stochastic PDEs Stokhos 
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Interoperability vs. Dependence 
    (“Can Use”)                   (“Depends On”) 

§  Although most Trilinos packages have no explicit 
dependence, often packages must interact with some other 
packages: 
w  NOX needs operator, vector and linear solver objects. 
w  AztecOO needs preconditioner, matrix, operator and vector objects. 
w  Interoperability is enabled at configure time.  
w  Trilinos cmake system is vehicle for: 

•  Establishing interoperability of Trilinos components… 
•  Without compromising individual package autonomy. 
•  Trilinos_ENABLE_ALL_OPTIONAL_PACKAGES option 

§  Architecture supports simultaneous development on many 
fronts. 
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Trilinos is made of packages 
§  Not a monolithic piece of software 

w  Like LEGO™ bricks, not Matlab™ 

§  Each package: 
w  Has its own development team and management 
w  Makes its own decisions about algorithms, coding style, etc. 
w  May or may not depend on other Trilinos packages 
 

§  Trilinos is not “indivisible” 
w  You don’t need all of Trilinos to get things done 
w  Any subset of packages can be combined and distributed 
w  Current public release contains ~50 of the 55+ Trilinos packages 

§  Trilinos top layer framework 
w  Not a large amount of source code: ~1.5% 
w  Manages package dependencies 

•  Like a GNU/Linux package manager 

w  Runs packages’ tests nightly, and on every check-in 
 

§  Package model supports multifrontal development 
§  New effort to create apps by gluing Trilinos together: Albany 



Software Development and Delivery 
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Compile-time Polymorphism 
Templates and Sanity upon a shifting foundation 
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“Are C++ templates safe? No, but they are good.”	


Software delivery:  
•  Essential Activity 
 
How can we: 
•  Implement mixed precision algorithms? 
•  Implement generic fine-grain parallelism? 
•  Support hybrid CPU/GPU computations? 
•  Support extended precision? 
•  Explore redundant computations? 
•  Prepare for both exascale “swim lanes”? 

C++ templates only sane way, for now. 

Template Benefits: 
–  Compile time polymorphism. 
–  True generic programming. 
–  No runtime performance hit. 
–  Strong typing for mixed precision. 
–  Support for extended precision. 
–  Many more… 

Template Drawbacks: 
–  Huge compile-time performance hit: 

•  But good use of multicore :) 
•  Eliminated for common data types. 

-  Complex notation: 
-  Esp. for Fortran & C programmers). 
-  Can insulate to some extent. 



Solver Software Stack 

Bifurcation Analysis " LOCA"

DAEs/ODEs:"
Transient Problems "

Rythmos"

Eigen Problems:"
Linear Equations:"

 Linear Problems                     "

AztecOO"
Ifpack, ML, etc..."

Anasazi"

Vector Problems:"
Matrix/Graph Equations:"

Distributed Linear Algebra" Epetra"

Teuchos"

Optimization"

MOOCHO"
Unconstrained:"
Constrained:"

Nonlinear Problems" NOX"

Se
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Phase I packages: SPMD, int/double	
 Phase II packages: Templated	
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Solver Software Stack 

Bifurcation Analysis "

DAEs/ODEs:"
Transient Problems "

Rythmos"

Eigen Problems:"
Linear Equations:"

 Linear Problems                     "
AztecOO"

Ifpack, "
ML, etc..."

Anasazi"

Vector Problems:"
Matrix/Graph Equations:"

Distributed Linear Algebra" Epetra"

Optimization"

MOOCHO"
Unconstrained:"
Constrained:"

Nonlinear Problems" NOX"

Se
ns

iti
vi

tie
s"

(A
ut

om
at

ic
 D

iff
er

en
tia

tio
n:

 S
ac

ad
o)
"

LOCA"

Phase I packages	
 Phase II packages	


Teuchos"

T-LOCA"

Belos*"

Tpetra*"
Kokkos*"

Ifpack2*, "
Muelu*,etc..."

T-NOX"

Phase III packages: Manycore*, templated	
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Getting Performance From Iterative Solvers 
• Classical preconditioned iterative solver, performance is driven 

by these underlying kernels: 
–  Sparse matrix times dense vector y = Ax (SpMV). 
–  Sparse triangular solve Ly = b (SpSV). 
–  Vector updates (w = ax + by), a, b scalars. 
– Dot products (a = xTy) a scalar. 

• Block Krylov:  
–  SpMM, SpSM: Multiple RHS. 
– GEMM: But different shapes than LAPACK (block vector 

update, dot product). 
•  s-step (CA) methods: 

– Matrix powers kernel yi = Aix, i= 1, s. 
–  Sparse triangular solve: ?? 
– Multivector updates and dot products 

• Multi-level solvers: 
–  Hierarchy setup, coarse grid solve. 

40 



41 Linear Conjugate Gradient Methods 

scalar product	

<x,y> defined by 

vector space 	


vector-vector 
operations	


linear operator 
applications	


Scalar operations	


Types of operations Types of objects Linear Conjugate Gradient Algorithm 

1 1 2 2, * * *n nv w v w v w v w= + + +
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General Sparse Matrix 

• Example:  

a11  0      0   0     0   a16   
0   a22   a23  0     0      0    

A =        0    a32   a33  0    a35    0  
0    0     0   a44   0      0  
0    0    a53  0    a55  a56 
a61   0    0    0    a65  a66 
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Compressed Row Storage (CRS) Format 

Idea:   
• Create  1 length nnz array of non-zero value. 

  1 length nnz array of column indices.  
  1 length m+1 array of ints: 

double  * values = new double [nnz]; 
int   * colIndices = new int[nnz]; 
int   * rowPointers = new int[m+1]; 
 
nnz – Number of nonzero terms in the matrix. 
m – Matrix dimension. 
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Compressed Row Storage (CRS) Format 

Fill arrays as follows: 
rowPointer[0] = 0; 
double * curValuePtr = values; 
int        * curIndicesPtr = colIndices; 
for (i=0; i<m; ++i) { // for each row 

rowPointer[i+1] = numRowEntries, number of nonzero entries in row i. 
for (j=0; j<numRowEntries; j++) { // for each entry in row i 

*curValuePtr++ = value of jth nonzero entry in row i. 
*curIndicesPtr ++ = column index of jth nonzero entry in row i. 

} 
} 
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CRS Example 

        A=

4 0 0 1
0 3 0 2
0 0 6 0
5 0 9 8

!

"

#
#
#
#

$

%

&
&
&
&

values            = {4, 1, 3, 2, 6, 5, 9, 8},
colIndices      = {0, 3, 1, 3, 2, 0, 2, 3}
nrowPointers = {0, 2, 4, 5, 8} 



int sparsemv( int m, double * values, 
              int * colIndices, int * rowPointers, 
              double * x, double * y){ 
 
for (int i=0; i< m; ++i){ 
      double sum = 0.0; 
  curNumEntries = rowPointers[i+1] – rowPointers[i]; 
      double * curVals = values[rowPointers[i]]; 
      int    * curInds = colIndices[rowPointers[i]]; 
 
  for (int j=0; j< curNumEntries; j++) 
          sum += curVals[j]*x[curInds[j]]; 
      y[i] = sum; 
    } 
  return(0); 
} 

Serial Sparse MV 
46	



Getting Good Performance From Iterative 
Methods 

• Optimize the above kernels: 
– Across many node types (using DRY). 
– Requires new algorithms, new implementations. 
– Biggest challenges: 

• Maintain performance and portability. 
• Manycore smoothers (for multi-level preconditioners). 
• Kernels for latency, throughput and hybrid parallel nodes. 
• Permutations, partitionings. 
• More … 

• Don’t forget about linear system assembly. 
– Will get to it later… 
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Parallel Computing Trends & 
Models 



What is Different: Old Commodity Trends Failing 

• Clock Speed. 
– Well-known. 
– Related: Instruction-level  

Parallelism (ILP). 
• Number of nodes. 

– Connecting 100K nodes 
is complicated. 

– Electric bill is large. 
• Memory per core. 

– Going down (but some 
hope in sight). 

• Consistent performance. 
– Equal work         Equal execution time. 

• Across peers or from one run to the next. 

Stein’s Law: If a trend cannot continue, it will stop.	

Herbert Stein, chairman of the Council of Economic Advisers under Nixon and Ford.	


International Solid-State Circuits Conference (ISSCC 2013) Report	

http://isscc.org/doc/2013/2013_Trends.pdf	


⇒



New Commodity Trends and Concerns Emerge 

Big Concern: Energy Efficiency. 
• Thread count. 

– Occupancy rate. 
– State-per-thread. 

• SIMT/SIMD (Vectorization). 
• Heterogeneity: 

– Performance variability.  
– Core specialization. 

• Memory trends: 
– Exciting, hard to predict. 
– Could be better, faster, and 

cheaper! 
Take-away:  

Parallelism is essential. 
International Solid-State Circuits Conference (ISSCC 2012) Report	

http://isscc.org/doc/2012/2012_Trends.pdf (top is 2013 report).	




Factoring 1K to1B-Way Parallelism 

• Why 1K to 1B? 
– Clock rate: O(1GHz) → O(109) ops/sec sequential 

 
– Terascale: 1012 ops/sec → O(103) simultaneous ops 

•  1K parallel intra-node. 
– Petascale: 1015 ops/sec → O(106) simultaneous ops 

•  1K-10K parallel intra-node. 
•  100-1K parallel inter-node. 

– Exascale: 1018 ops/sec → O(109) simultaneous ops 
•  1K-10K parallel intra-node. 
•  100K-1M parallel inter-node. 



The HPC Ecosystem 
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Three Parallel Computing Design Points 

• Terascale Laptop:  Uninode-Manycore 

• Petascale Deskside:  Multinode-Manycore  

• Exascale Center:  Manynode-Manycore 

Common Element 

Goal: Make 
Petascale = Terascale + more 
Exascale = Petascale + more 

Most applications will not adopt an exascale programming 
strategy that is incompatible with tera and peta scale. 
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MPI+X Parallel Programming Model:  
Multi-level/Multi-device 

Stateless, vectorizable, efficient  
computational kernels!

run on each core!

Intra-node (manycore) 
parallelism and resource 

management!

Node-local control flow (serial)!

Inter-node/inter-device (distributed) 
parallelism and resource management!

Threading!

Message Passing!

stateless kernels!

computational 
node with 

manycore CPUs!
and / or!
GPGPU!

network of 
computational 

nodes!
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HPC Value-Added 

Broad Community 
Efforts 



Incentives for MPI+X 

• Almost all DOE scalable applications use MPI. 
– MPI provides portability layer. 
– Typically app developer accesses via conceptual layer. 
– Could swap in another SPMD approach (UPC, CAF). 
– Even dynamic SPMD is possible.  Adoption expensive. 

• Entire computing community is focused on X. 
–  It takes a community… 
– Many promising technologies emerging. 
–  Industry very interested in programmer productivity. 

• MPI and X interactions well understood. 
– Straight-forward extension of existing MPI+Serial. 
– New MPI features will address specific threading needs. 
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Effective node-level parallelism: First priority 

• Future performance is mainly from node improvements. 
– Number of nodes is not increasing dramatically. 

• Application refactoring efforts on node are disruptive: 
– Almost every line of code will be displaced. 

• All current serial computations must be threaded.   
– Successful strategy similar to SPMD migration of 90s. 

• Define parallel pattern framework. 
• Make framework scalable for minimal physics. 
• Migrate large sequential fragments into new framework. 

• If no node parallelism, we fail at all computing levels. 
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Algorithms Challenges from HW Trends 

•  Realize node parallelism of O(1K-10K). 
• Do so  

– Within a more complicated memory system and  
– With reduced relative memory capacity and  
– With decreasing reliability. 

• For more challenging problems. 
• Certainly internode parallelism continues to be 

important, but: 
–  Improvements can mostly be incremental. 
– However MPI interface changes are crucial. 



Designing for Trends 

• Long-term success must include design for change. 
• Algorithms we develop today must adapt to future 

changes. 
• Lesson from Distributed Memory (SPMD): 

– What was the trend? Increasing processor count. 
– Domain decomposition algs matched trend. 

• Design algorithm for p domains. 
• Design software for expanded modeling within a domain. 



New Trends and Responses 

•  Increasing data parallelism: 
– Design for vectorization and increasing vector lengths. 
–  SIMT a bit more general, but fits under here. 

•  Increasing core count: 
–  Expose task level parallelism. 
–  Express task using DAG or similar constructs. 

• Reduced memory size: 
–  Express algorithms as multi-precision. 
– Compute data vs. store 

• Memory architecture complexity: 
–  Localize allocation/initialization. 
–  Favor algorithms with higher compute/communication ratio. 

• Resilience:  
–  Distinguish what must be reliably computed. 
–  Incorporate bit-state uncertainty into broader UQ contexts? 



Challenge: Achieve Scalable 1B-way Concurrency 

• 1018 Ops/sec with 109 clock rates: 109 Concurrency. 
• Question:  What role (if any) will MPI play? 
• Answer:  Major role as MPI+X. 

– MPI: Today’s MPI with several key enhancements. 
–      X: Industry-provided; represents numerous options. 

• Why:  MPI+X is leveraged, synergistic, doable. 
– Resilience: Algorithms + MPI/Runtime enhancements. 
– Programmability: There is a path. 

• Urgent: Migration to manycore must begin in earnest. 
– We can’t wait around for some magic exascale 

programming model. 
– We have to begin in earnest to learn about X options and 

deploy as quickly as possible. 
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Manycore Concerns for Libraries 



Node parallelism will impact everything 



With C++ as your hammer,  
everything looks like your thumb. 
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Multi-dimensional Dense Arrays 

• Many computations work on data stored in multi-dimensional 
arrays: 
– Finite differences, volumes, elements. 
– Sparse iterative solvers. 

• Dimension are (k,l,m,…) where one dimension is long: 
– A(3,1000000) 
– 3 degrees of freedom (DOFs) on 1 million mesh nodes. 

• A classic data structure issue is:  
– Order by DOF: A(1,1), A(2,1), A(3,1); A(1,2) … or 
– By node: A(1,1), A(1,2), … 

• Adherence to raw language arrays force a choice. 



Struct-of-Arrays vs. Array-of-Structs 

A False Dilemma 



Compile-time Polymorphism 

Kokkos functor 
(e.g., AxpyOp) 

Serial 
Kernel 

+SerialNode Pthread 
Kernel 
 +TpiNode 

Thrust 
Kernel +ThrustNode 

Future 
Kernel 

+FutureNode 

. . .	




A Bit about Functors 
Classic function “ComputeWAXPBY_ref.cpp” 

 
/*! 
  Routine to compute the update of a vector with the sum of two 
  scaled vectors where: w = alpha*x + beta*y 
 
 @param[in] n the number of vector elements (on this processor) 
  @param[in] alpha, beta the scalars applied to x and y respectively. 
  @param[in] x, y the input vectors 
  @param[out] w the output vector. 
  @return returns 0 upon success and non-zero otherwise 
*/ 
int ComputeWAXPBY_ref(const local_int_t n, const double alpha, const double * 
const x,  const double beta, const double * const y, double * const w) { 
 
for (local_int_t i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i]; 
 
  return(0); 
} 
 



A Bit about Functors 
Functor-calling function “ComputeWAXPBY.cpp” 

 
/*! 
  Routine to compute the update of a vector with the sum of two 
  scaled vectors where: w = alpha*x + beta*y 
 
 @param[in] n the number of vector elements (on this processor) 
  @param[in] alpha, beta the scalars applied to x and y respectively. 
  @param[in] x, y the input vectors 
  @param[out] w the output vector. 
  @return returns 0 upon success and non-zero otherwise 
*/ 
int ComputeWAXPBY(const local_int_t n, const double alpha, const double * const x,  const 
double beta, const double * const y, double * const w) { 
 
// for (local_int_t i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i]; 
 tbb::parallel_for(tbb::blocked_range<size_t>(0,n), waxpby_body(n, alpha, x, beta, y, w) ); 
 
  return(0); 
} 
 



A Bit about Functors 
Functor “waxpby_body” 

 #include "tbb/parallel_for.h" 
#include "tbb/blocked_range.h” 
  class waxpby_body{ 
    size_t n_; 
    double alpha_; 
    double beta_; 
    const double * const x_; 
    const double * const y_; 
    double * const w_;  public: 
  waxpby_body(size_t n, const double alpha, const double * const x, const double beta, 
const double * const y, double * const w) 
      : n_(n), alpha_(alpha), x_(x), beta_(beta), y_(y), w_(w) {  } 
  void operator() (const tbb::blocked_range<size_t> &r) const { 
    const double * const x = x_; 
    const double * const y = y_; 
    double * const w = w_; 
    double alpha = alpha_; 
    double beta = beta_; 
    for(size_t i=r.begin(); i!=r.end(); i++) w[i] = alpha * x[i] + beta * y[i]; 
  } 
}; 
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Kokkos Library 

• Kokkos IS: 
–  An implementation of the programming model 
– Consolidation of proxy-applications’ common functionality 
–  “Low level” enabling data structures and algorithms 
–  Extremely attentive to: 

1.  Portability & performance (as per project charter) 
2.  Usability: ease of use, error detection, extensibility, 

maintainability, ... 

• Kokkos IS NOT: 
–  A linear algebra library 
–  A discretization library 
–  A mesh library 
Ø Intent: Build such libraries on top of KokkosArray 
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The Problem / Challenge 
Future of HPC: Manycore Accelerators 

• Multicore CPU 
–  Increasing core counts with decreasing global memory / core  
– Cores share caches and memory controllers 
– Non-uniform memory access (NUMA), performance issues 
–  Increasing vector unit lengths 
Ø Memory access patterns critical for best performance 

• Manycore GPU (e.g., NVIDIA, AMD) 
–  Physically separate memory with data-transfer overhead 
– Work-dispatch interaction between host and device 
– Memory controller optimized for thread-gang (warp) based access 
Ø Memory access patterns critical for acceptable performance 

• Is all about Memory Access Patterns 
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The Problem / Challenge 
Future of HPC: Manycore Accelerators 

• Shared Memory Threading within MPI is required 
– Cannot run MPI-everywhere on GPU 
– Cannot afford MPI process memory for every core 
– Cannot scale MPI collectives to millions of CPU cores 

• Unless you have heroic hardware: Blue Gene Q 

• Memory Access Patterns are Critical 
– Correctness – no race conditions among threads 
–  Performance – proper blocking or striding 

• Access Pattern Requirements are Device-dependent 
– CPU-core : blocking for cache and cache-lines 
– GPU : striding for coalesced access 
–  “array of structures” vs. “structure of arrays” 
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Programming Model Concept 

• Manycore Device 
– Has a separate memory space (physically or logically) 
– Dispatch work to cores/threads of the device 
– Work : computations + data residing on the device 
– Currently supported devices CPU+pthreads, CUDA 

• Classic Multidimensional Arrays, with a twist 
– Map multi-index (i,j,k,...) onto memory location on the device 

• Should be efficient for both memory used and time to compute 
– Map is derived from a Layout 
Ø Choose Layout for device-specific access pattern requirements 

•  Layout must change when porting among devices 
–  Layout changes are transparent to the user code; 
Ø IF the user code honors the simple array API: a(i,j,k,...) 
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Programming Model Implementation 

• Standard C++ Library, not a Language extension 
–  In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ... 
– Not a language extension like OpenMP, OpenACC, OpenCL, CUDA 

• Template Meta-Programming 
–  For device-specializations and array layout polymorphism 
– C++1998 standard (would really be nice to have C++2011)  

• Extremely Attentive to: 
1.  Portability – the project charter R&D constraint 
2.  Performance – the project charter R&D objective 
3.  Usability – the SQE objective 
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Current Capabilities 

• Multidimensional Arrays 
– Declare dimensions and access data members 
–  Allocate and deallocate in Device memory space 
– Deep-copy data between host and device memory space 
– Optionally choose or define your own Layout 

• Parallel-For and Parallel-Reduce 
– Define thread-parallel work functors (function + data) 
– Dispatch work to device 
– Optionally wait for dispatched work to complete 
– Reduction is guaranteed deterministic, given same # of threads 

• Research: Task-Parallelism, Pipeline-Parallelism 



Status: Kokkos 

• parallel_for, parallel_reduce covered. 
• Covers 90+% of SLOC, especially in apps. 

– FEM, FDM, FVM construction, except final assemble. 
• Important issues:  

– Data placement, ownership. 
– Construction and view APIs. 
– Extensibility (RTI). 



FELIX_ViscosityFO_Def.hpp 



Viscosity Kokkos kernel 

template < typename ScalarType, class DeviceType > 
class Viscosity { 
 Array2 mu_; 
 Array4 U_; 
 int numQPs_; 
 ScalarType ff_; 
 ScalarType factor_; 
 ScalarType power_; 
 
 public: 
 typedef DeviceType device_type; 
 
 Viscosity (Array2 &mu, 
            Array4 &u, 
            int numQPs, 
            ScalarType ff, 
            ScalarType factor, 
            ScalarType power) 
  : mu_(mu) 
  , U_(u) 
  , numQPs_(numQPs) 
  , ff_(ff) 

  , factor_(factor) 
  , power_(power){} 
 
 KOKKOS_INLINE_FUNCTION 
 void operator () (std::size_t i) const 
 { 
  ScalarType ep=0.0; 
  for (std::size_t j=0; j<numQPs_; j++) 
  { 
   ep=U_(i, j,0,0)*U_(i,j,0,0); 
   ep +=U_(i, j,1,1)*U_(i,j,1,1); 
   ep +=U_(i, j,0,0)*U_(i,j,1,1); 
   ep +=1.0/4.0*(U_(i, j,0,1)+ U_(i,j,1,0))*(U_(i,j,0,1)+U_(i,j,1,0)); 
   ep +=1.0/4.0*U_(i,j,0,2)*U_(i,j,0,2); 
   ep +=1.0/4.0*U_(i,j,1,2)*U_(i,j,1,2); 
   ep +=ff_; 
   mu_(i,j) = factor_*pow(ep, power_); 
  } 
 } 
}; 
 



Kokkos::Cuda on Shannon 
Viscosity Host_time =      0.654771    Viscosity Device_time =      0.000481 
Body Force Host_time = 0.014789    Body Force Device_time = 0.000451 
Residual Host_time =      0.636981    Residual Device_time =      0.000536 
 
 
 
 
 
 
 
Viscosity Host_time =         0.69962      Viscosity Device_time =          0.045445 
Body Force Host_time =    0.017365    Body Force Device_time =     0.002276 
Residual Host_time =         0.565082    Residual Device_time =          0.040913 
 
numThreads =2,   numCores =8 
 
 
 
 
 
 
Viscosity Host_time =      7.41132              Viscosity Device_time =          0.019931 
Body Force Host_time = 1.18717               Body Force Device_time =    0.010295 
Residual Host_time =       35.458                 Residual Device_time =         0.130741 
 
numThreads =4,   numCores =56 
numCells=10000,  numWorkSet=100 
 

Kokkos::OpenMP on Compton (MIC) 

Kokkos::Threads on Shannon 



The Application-Solver Interface 

• Next-generation solvers are not just about scalable 
algorithms. 

• Problem construction:  Setting up Ax=b. 
– 1% – 50% of total execution time for MPI-only 
– Amdahl’s Law (without some change): 50% – 99%. 

• Performance requirements for Ax=b setup: 
– Vectorized. 
– Threaded. 
– Data properly placed. 
– Repeatable: Inspector-Executor pattern. 



Future Requirements (for all of us) 

• Your code should either: 
– Spawn threads or 
– Be thread-safe or 
– Both. 

• Your code should use KokkosArray, or something like. 
– Array of structs vs. struct of arrays: false choice. 
– Need to abstract. 
– Alternative(?) Array-of-structs-of-arrays. 



Sparse Kernels 
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Sparse Kernels Requirements 

• Efficient sparse kernels are essential for manycore 
computations. 

• Kokkos Experience: Generic kernels insufficient. 
• Inspector-executor model is essential: 

– We often solve a family of sparse systems whose: 
• Patterns are identical. 
• Values change. 

–  Inspection phase builds a “plan”: 
• Performs work related to pattern-only issues: 

– Communication patterns. 
– Permutations. 

– Executor: Executes plan for given set of values. 
– Update values: Replace old values with new. 



Sparse Kernel Design 

• Sparse Matrix Graph:  
– 1st class object for inspector-executor. 
– Sharable between multiple matrices.  

• Two sources for sparse kernels: 
– Pretty good kernel library  (PGKlib). 

• Pretty-good threaded (OpenMP, CUDA) kernels. 
• Similar to Traditional approachs for serial. 
• Goal (achieved): Reach achievable bandwidth. 
• How achieved?: KokkosArray. 

– Very easy plug-in mechanism for vendor libraries. 
• Especially for sparse kernels, dense non-trivial. 



Leveraging Vendor Libraries 

• Lots of discussion about autotuning sparse computations. 
• Less-frequently mentioned: Vendor-tuned kernels. 
• Computer system vendors (Intel, Nvidia, Cray) are writing 

node-level optimal kernels: SpMV, BLAS, SpSV, … 
• Virtuous circle:  

– Vendor kernel is optimal. 
–  (Demmel) student beats vendor implementation. 
– Vendor improves their kernel. 

• Reaction:  
– Make integration of third-party kernels simple. 
– Again, inspector-executor pattern support is essential. 



Manycore Smoothers 
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Manycore Smoothers: Essential for Scalable Solvers 

• Migration to MPI+X (or something like it) is assumed. 
• Multi-level preconditioners essential for constraining 

iteration growth. 
• Natural decomposition: 1 subdomain per manycore 

node. 
• Requirement: Need manycore smoothers. 



Algebraic Schur Complement Framework 

1 1
2 22 21 11 12 2 2 21 11 1( )Sx A A A A x b A A b− −= − = −



89ShyLU Overview

•  ShyLU (Scalable Hybrid LU) is hybrid:
•  In the mathematical sense (direct + iterative) for robustness
•  In the parallel programming sense (MPI + Threads) for scalability

•  More robust than simple preconditioners and scalable than direct solvers
•  ShyLU is a subdomain solver where a subdomain is not limited to 
• one MPI process
•  Multithreaded direct factorization for the block diagonals.
•  Compute block diagonals with wide or narrow separators
•  Approximate Schur complement with dropping or probing
•  Use it as an Ifpack preconditioner

Scalable Robust



90ShyLU Internals

Wide Separators: Scalable, but larger Schur complement

Original Probing
Chen, Mathew

1991
ShyLU’s Probing, 

Band + nnz(A)

Structure of approximate Schur complement Smaller problems are better for 
the threads



91Simulation of Circuit problems

Speedup of solver & simulation times

Solver ShyLU KLU SuperLU SuperLU_Dist PARDISO

Simulation time 
for 1ns run

10.67 mins 3.95 hrs 20.04 hrs - -

•  Parallel direct solvers fail with this linear 
system

•  Simulation with KLU takes over a week (20 
hs or more).

Need a robust, parallel solver
•  ShyLU provides 19x speedup in the total 

simulation time (w/ 16 nodes)
•  Simulation with ShyLU completes in few 

hours.
•  More than 64 cores was infeasible with MPI. 

Hybrid parallelism helped in utilizing more 
cores. 





Co-Design for Resilience 
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Our Luxury in Life (wrt FT/Resilience) 

The privilege to think of a computer as a 
reliable, digital machine. 
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Paradigm Shift is Coming 

Fault rate is growing exponentially therefore faults will 
eventually become continuous. 

Faults will be continuous and across all levels from HW to 
Apps (no one level can solve the problem -- solution must 
be holistic) 

Expectations should be set accordingly with users and 
developers 

Self-healing system software and application codes needed 

Development of such codes requires a fault model and a 
framework to test resilience at scale 

Validation in the presence of faults is critical for scientists to 
have faith in the results generated by exascale systems 

 



Resilience Trends Today: An X86 Analogy 

Global checkpoint restart 
  
• Preserve the illusion: 

–  reliable digital machine. 
–  CP/R model: Exploit latent properties. 

• SCR: Improve performance 50-100%. 
• NVRAM, etc. 
• More tricks are still possible. 
• End game predicted many times. 

Resilient applications 
 
•  Expose the reality: 

–  Fault-prone analog machine. 
–  New fault-aware approaches. 

•  New models: 
–  Programming, machine, execution. 

•  New algorithms: 
–  Relaxed BSP. 
–  LFLR. 
–  Selective reliability. 

•  Published June 1980 
•  Sequential ISA. 
•  Preserved today. 
•  Illusion: 

–  Out of order exec. 
–  Branch prediction. 
–  Shadow registers. 
–  … 

•  Cost: Complexity, energy. 

Sequential X86 Illusion discarded 



Resilience Problems:  Already Here, Already Being 
Addressed, Algorithms & Co-design Are Key 

• Already impacting performance: Performance variability. 
– HW fault prevention and recovery introduces variability. 
– Latency-sensitive collectives impacted. 
– MPI non-blocking collectives + new algorithms address this. 

• Localized failure: 
– Now: local failure, global recovery. 
– Needed: local recovery (via persistent local storage). 
– MPI FT features + new algorithms: Leverage algorithm reasoning. 

• Soft errors: 
– Now: Undetected, or converted to hard errors. 
– Needed: Apps handle as performance optimization. 
– MPI reliable messaging + PM enhancement + new algorithms. 

• Key to addressing resilience: algorithms & co-design. 
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Four Resilient Programming Models 

• Relaxed Bulk Synchronous (rBSP) 

• Local-Failure, Local-Recovery (LFLR) 

• Skeptical Programmer (SP) 

• Selective (Un)reliability (SU/R) 



Resilience Issues Already Here 

Brian van Straalen, DOE Exascale Research 
Conference, April 16-18, 2012. Impact of persistent 
ECC memory faults. 

•  First impact of unreliable HW? 
–  Vendor efforts to hide it. 
–  Slow & correct vs. fast & wrong. 

• Result: 
–  Unpredictable timing. 
–  Non-uniform execution across cores. 

• Blocking collectives: 

– tc = maxi{ti} 

• Also called “Limpware”:  
–  Haryadi Gunawi, University of Chicago 
–  http://www.anl.gov/events/lights-case-limping-hardware-tolerant-systems 
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Latency-tolerant Algorithms + MPI 3:  
Recovering scalability 

Up is good	


Hiding global communication latency in the GMRES algorithm on massively parallel machines, 	

P. Ghysels T.J. Ashby K. Meerbergen W. Vanroose, Report 04.2012.1, April 2012,	

ExaScience Lab Intel Labs Europe	
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What is Needed to Support Latency Tolerance? 

• MPI 3 (SPMD): 
– Asynchronous global and neighborhood collectives. 

• A “relaxed” BSP programming model: 
– Start a collective operation (global or neighborhood). 
– Do “something useful”. 
– Complete the collective. 

• The pieces are coming online. 
• With new algorithms we can recover some scalability. 



“Communication-Avoiding” Methods Challenges 

• Popular, been around a long time: 
– s-step iterative methods. 
– Simultaneous execution of s Krylov iterations. 

• Biggest issue: Compute (prec) matrix-powers kernel. 
–  ( Ax, A(Ax), A(A(Ax)), … 
– Fewer, larger data transfers, redundant computing. 

• Old numerical issue: Behaves like the power method. 
– Fix: Use a different basis. 
– CA iterative methods now work well for “easy” linear systems. 

• Current issues: Hard to use with non-trivial preconditioners. 
–  (AMx, AM(AMx), AM(AM(AMx)), …) 
– Current “black box” preconditioner interface not compatible. 

•  z = Mr, Preconditioner takes a vector r and produces z. 



2D PDE on Regular Grid (Standard Laplace) 

Processor  2	


Processor  0	
 Processor  1	


Processor  3	


“Halo” for Proc 0	
         -1	

	


-1      4      -1	

	


         -1	


2-step	




Enabling Local Recovery from Local Faults 

• Current recovery model:  
Local node failure,  
global kill/restart. 

• Different approach: 
– App stores key recovery data in 

persistent local (per MPI rank) 
storage (e.g., buddy, NVRAM),  
and registers recovery function. 

– Upon rank failure: 
• MPI brings in reserve HW, assigns 

to failed rank, calls recovery fn. 
• App restores failed process state via 

its persistent data (& neighbors’?). 
• All processes continue. 
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LFLR Algorithm Opportunities & Challenges 

• Enables fundamental algorithms work to aid fault recovery: 
– Straightforward app redesign for explicit apps. 
– Enables reasoning at approximation theory level for implicit apps: 

• What state is required? 
• What local discrete approximation is sufficiently accurate? 
• What mathematical identities can be used to restore lost state? 

– Enables practical use of many exist algorithms-based fault tolerant 
(ABFT) approaches in the literature. 

10
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What is Needed for  
Local Failure Local Recovery (LFLR)? 

• LFLR realization is non-trivial. 
• Programming API (but not complicated). 
• Lots of runtime/OS infrastructure. 

– Persistent storage API (frequent brainstorming outcome). 
• Research into messaging state and recovery. 
• New algorithms, apps re-work. 
• But: 

– Can leverage global CP/R logic in apps. 
 
• This approach is often considered next step in beyond 

CP/R. 



First LFLR Example 

• Prototype LFLR Transient PDE solver. 
• Simulated process lost. 
• Simulated persistent store. 
• Over-provisioned MPI ranks. 
• Manual process kill. 

Results from explicit variant of Mantevo/MiniFE, Keita Teranishi	


Data/work recovery time	


Persistent store time	




Data Recovery from Computation 
•  Lots of scientific objects are 

dependent on more compact data 
objects 

–  Higher abstraction of mathematical 
model 

•  Can be recovered through 
inexpensive computation 

–  90%+ storage reduction in miniFE 
–  Some refactoring in scientific 

objects 
•  Put them “recoverable” subclass 

–  Increase roll-back overhead  
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Topolog
y 

(Mesh)  

Tensor 
(Basis) 

Initial 
Conditio

n 

Matri
x 

Matrix 
Assembly 

Latest  
Conditio

n 

miniFE: 512x512x512: 1024  
SandyBridge CPU Cores  (FDR IB)	  
With Matrix 	   Without Matrix	  

Storage per 
core	   53.94 MB	   2.1 MB	  

Regenerate 
overhead	  

(in	  memory	  )	  0.1	  sec	  
(in	  global	  file	  system)	  5	  sec+	  	  

(in memory + compute) 
0.6 sec	  



Every calculation matters 

•  Small PDE Problem: ILUT/GMRES 
•  Correct result:35 Iters, 343M 

FLOPS 
•  2 examples of a single bad op. 
•  Solvers:  

–  50-90% of total app operations. 
–  Soft errors most likely in solver. 

•  Need new algorithms for soft errors: 
–  Well-conditioned wrt errors. 
–  Decay proportional to number of errors. 
–  Minimal impact when no errors. 

Description Iters FLOPS Recursive 
Residual 
Error 

Solution Error 

All Correct 
Calcs 

35 343M 4.6e-15 1.0e-6 

Iter=2, y[1] += 
1.0 
SpMV incorrect 
Ortho subspace 

 
35 

 
343M 

 
6.7e-15 

 
3.7e+3 

Q[1][1] += 1.0 
Non-ortho 
subspace 

N/C N/A 7.7e-02 5.9e+5 
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Soft Error Resilience 

•  New Programming Model Elements:  
•  SW-enabled, highly reliable: 

•  Data storage, paths. 
•  Compute regions. 

•  Idea: New algorithms with minimal 
usage of high reliability. 

•  First new algorithm: FT-GMRES. 
•  Resilient to soft errors. 
•  Outer solve: Highly Reliable 
•  Inner solve: “bulk” reliability. 

•  General approach applies to many 
algorithms. 



Skeptical Programming 
I might not have a reliable digital machine 

1
0
9 

Evaluating the Impact of SDC in Numerical Methods	

J. Elliott, M. Hoemmen, F. Mueller, SC’13	




FT-GMRES Algorithm 
“Unreliably” computed. 
Standard solver library call. 
Majority of computational cost. 

Captures true linear operator issues, AND 
Can use some “garbage” soft error results. 



Selective reliability enables “running through” faults 

11
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Desired properties of FT methods 

• Converge eventually 
– No matter the fault rate 
– Or it detects and indicates failure 
– Not true of iterative refinement! 

• Convergence degrades gradually as fault rate 
increases 
– Easy to trade between reliability and extra work 

• Requires as little reliable computation as possible 
• Can exploit fault detection if available 

– e.g., if no faults detected, can advance aggressively 

1
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Selective Reliability Programming 

• Standard approach: 

–  System over-constrains reliability 

–  “Fail-stop” model 

– Checkpoint / restart 

–  Application is ignorant of faults 

• New approach: 

–  System lets app control reliability 

–  Tiered reliability 

–  “Run through” faults 

–  App listens and responds to faults 

1
1
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What is Needed for Selective Reliability? 

• A lot, lot. 
• A programming model. 
• Algorithms. 
• Lots of runtime/OS infrastructure. 
• Hardware support? 



Comments on New Algorithm R&D 
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Co-Design Cray-style (circa 1996) 
(This is not a brand new idea) 



• Better latency tolerant algorithms permit: 
– More error detection/correction w/o harming scalability. 
– Cheaper networks, especially for collectives. 

• LFLR: 
– Best ways to achieve persistent storage? 
– Reduce or eliminate high speed global file system. 

• Skeptical programming: 
– Simple approach to greatly reduce SDC and bad results. 
– Permit lower reliability HW. 

• Selective unreliability: 
– How to program? 
– How to implement high (or low?) reliability. 

• Co-design of algorithms and system is very important. 

Algorithm Success & System Design 



Software Engineering and HPC 
Efficiency vs. Other Quality Metrics 

Source:	

Code Complete	

Steve McConnell	


Verification	

Validation	
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Summary of Current Efforts 
•  Node-level parallelism is the new commodity curve:  

–  Tasks, threads, vectors. 

• MPI+X is and will be dominant platform for tera, peta, exascale: 
– Natural fit for many science & engineering apps. 
– Hierarchical composition matches tera, peta and exascale. 
– Naturally leverages industry efforts. 

• C++ compile-time polymorphism seems essential. 
• Everything must be threaded or thread-safe or both. 
• Multifaceted library strategy: 

– Trilinos: Good API + PGKlib. 
– Easy integration of vendor or specialize kernels. 

• Manycore smoothers are essential. 
• Resilient computing models emerging.  Algorithms R&D 

essential. 
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